Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## De Haas-van Alphen Effect in the Filled Skutterudite CeRu₄Sb₁₂ * H. Sugawara¹, K. Abe¹, T. D. Matsuda¹, Y. Aoki¹, H. Sato¹, R. Settai², Y. Ōnuki² - Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan - ² Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan Ternary intermetallic compounds RT_4X_{12} (R = rare earth; T = Fe, Ru, and Os; X = P, As, and Sb) with the filled skutterudite structure show a rich variety of the electrical and magnetic properties depending on the rare earth R. Among them, $CeRu_4Sb_{12}$ is reported to show no magnetic order but non-Fermi-liquid anomalies at low temperatures. We have succeeded in observing the de Haas-van Alphen effect in $CeRu_4Sb_{12}$ for the first time. The Fermi surface topology is found to be different from that in $LaRu_4Sb_{12}$, suggesting the strong c-f hybridization or the itinerant nature of 4f-electrons. The cyclotron effective mass m_c^* is found to be enhanced $m_c^* = 4.6$ -5.8 m_0 indicating a strong correlation in this compound. $CeRu_4Sb_{12}$ is mostly like semimetal, considering this compound is a metallic whereas most of the other Ce-based filled skutterudites show semiconductor-like behaviors. From a comparison between the Sommarfeld coefficient($\sim 100 \text{mJ/K}^2 \cdot \text{mol}$) and m_c^* , the existence of another Fermi surface sheet with large effective mass of $m_c^* \sim 50 \ m_0$ is expected. ^{*}This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.